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ABSTRACT 
In this research we present an algorithm for a six-wheeled robotic vehicle 

with articulated suspension (RVAS) to estimate the vehicle velocity and 

acceleration states, slip ratio and the tire forces. The estimation algorithm 

consists of six parts. In the first part, a wheel state estimator estimates the wheel 

rotational speed and its angular acceleration using Kalman filter, which is used 

to estimate the longitudinal tire force distribution in the second part. The third 

part is to estimate respective longitudinal, lateral, and vertical speeds of the 

vehicle and wheels. Based on these speeds, the slip ratio and slip angle are 

estimated in the fourth part. In the fifth part, the vertical tire force is then 

estimated. In the sixth part, the lateral tire force is then estimated.  For a 

simulation test environment, the RVAS dynamic model is developed using Matlab 

and Simulink. The estimation algorithm is then verified in simulation using the 

vehicle test data and different test scenarios. It is found from simulation results 

that the proposed estimation algorithm can estimate the vehicle states, 

longitudinal tire forces efficiently. Moreover, a small prototype of the robotic 

vehicle is fabricated for experimental verification of the estimation algorithm. 

Various experiments are executed in pavement and off-road driving to estimate 

the wheel angular position, velocity and acceleration states and finally the slip 

ratio is estimated in these situations. 

 

Keywords: state estimation, Kalman filter, robotic vehicle with articulated 

suspension, slip ratio estimation, Fiala tire model, tire forces. 

NOMENCLATURE 
g gravity acceleration 

𝑐𝑑  rotational damping coefficient of the arm rod 

I𝑥 , Iy, Iz moments of inertia of the vehicle about the roll,  

 pitch and yaw axes respectively 

𝐼𝑎𝑟𝑚_𝑥 , 𝐼𝑎𝑟𝑚𝑦
, 𝐼𝑎𝑟𝑚_𝑧   moments of inertia of the arm rod about the roll, pitch 

and yaw axes respectively 

𝐼w_x   moment of inertia of the wheel about the roll axis 

𝐼𝑤_𝑧   moment of inertia of the wheel about the yaw axis 

𝐽𝑤    moment of inertia of the wheel about its rotational axis  

𝑘𝑠     rotational spring stiffness of the arm rod 

𝑙𝑎𝑟𝑚  length of the arm rod 

𝑙𝑓    distance from the vehicle c.g to the front arm axle 

𝑙𝑚       distance from the vehicle c.g. to the middle arm axle 

𝑙𝑟    distance from the vehicle c.g. to the rear arm axle 

𝑚𝑎𝑟𝑚, 𝑚𝑠, 𝑚𝑤 masses of the arm rod, sprung mass of the vehicle and the in-

wheel motor respectively 

𝑀𝑠𝑥𝑖   internal moment acting on the sprung mass about the roll axis at the 

rotational center of the ith arm rod 

𝑀𝑠𝑧𝑖  internal moment acting on the sprung mass about the yaw axis at the 

rotational center of the ith arm rod 
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𝑀𝑧_𝑑𝑒𝑠 yaw moment input 

𝑡𝑤    half of the vehicle width 

𝜔𝑎𝑟𝑚_𝑖 angular velocity vector of the ith arm rod 

ωcg    vehicle angular velocity vector 

ωi    angular speed at the ith wheel 

𝜔̂𝑖    estimated angular speed at the ith wheel 

𝜃𝑎𝑟𝑚𝑖
(0) initial arm angle at time 0 

R    tire radius of the ith wheel 

λi    slip ratio at the ith wheel 

𝐹𝑠𝑥𝑖, 𝐹𝑠𝑦𝑖, 𝐹𝑠𝑧𝑖  longitudinal, lateral, and vertical internal forces acting on a 

sprung mass at the rotational center of the ith arm rod respectively 

𝐹𝑡𝑥𝑖, 𝐹𝑡𝑦𝑖, 𝐹𝑡𝑧𝑖: longitudinal, lateral, and vertical tire forces at the ith wheel 

respectively 

𝑟̇𝑐𝑔 , 𝑟̈cg vehicle velocity, and acceleration vectors 

𝑟̈i     translational acceleration vector of the rotational center of the ith arm 

rod 

𝑟̈wi     translational acceleration vector of the ith wheel 

𝑇𝑖      measured wheel torque of the ith wheel 

𝑇𝑠𝑒𝑙𝑓_𝑖   self-aligning torque at the ith wheel 

𝑇𝑆&𝐷_𝑖   sum of spring and damping torques of the ith arm rod 

v𝑥, vy, vz Vehicle longitudinal, lateral & vertical velocities 

𝛼𝑖 slip angle at the ith wheel 

𝛼𝑐𝑔 vehicle angular acceleration vector 

𝛼𝑎𝑟𝑚_𝑖 angular acceleration vector of the ith arm rod 

𝜙̇, 𝜃̇, 𝜑̇ roll rate, pitch rate, yaw rate 

𝜃𝑎𝑟𝑚_𝑖 , 𝜃𝑎𝑟𝑚_𝑠𝑡𝑎𝑡𝑖𝑐 arm angle at ith arm rod, and static arm  

1. INTRODUCTION 
 

States estimation of autonomous vehicle has received appreciable attention in the 

recent decades. States estimation is necessary in vehicle stability and motion 

control, specially when it is difficult to measure some states or the sensor data is 

noisy. In earlier stages, most research was based on the kinematic model of a 

wheeled mobile robot where the input was velocity. The dynamic modeling and 

forces estimation have a significant impact on the control and the stability of those 

autonomous vehicle specially when it is difficult to measure some states or forces 

[1].  

In order to describe the vehicle movements, we need numerous measurements and 

kinematic and dynamic modeling, which represent the system behavior. The 

fineness degree of modeling depends on the main objectives. For a simulator 

design, modeling efforts focus on reproducing the vehicle components behavior 

as precisely as possible. Simulations of full vehicle kinematics and dynamics 

models are typically computationally expensive and time-consuming. However, 

for high performance vehicle controllers, simplifications are needed to do only the 

necessary computation in real-time [2]. Tire forces influence largely the chassis 

stability and maneuverability [3]. These forces are limited by the maximum 

friction that can be generated between the tire carcass and the road surface, which 

is the result of complex phenomena on the rubber-road interface. A 
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comprehensive list of relevant real-time tire force estimation methods can be 

found in [4]and offline approaches [5,6,7]. 

Many Kalman filters are used for state estimation. E. Nada et al., [8] presented 

a modified dual unscented Kalman filter (MDUKF) approach to estimate vehicle 

states and vehicle parameters to improving performance of AVs due to the 

nonlinear characteristic of tire-road. K. Yi et al., [9] described torque distribution 

control algorithm of six-wheeled vehicles using the friction circle of each wheel. 

H. Hamann et al., [10] used Unscented Kalman filter (UKF) for tire force 

estimation for a vehicle with standard sensors and no knowledge of tire and road 

properties. A. Rezaeian et al., [11] proposed an algorithm to estimate tire forces 

by nonlinear observers. The estimations are robust against changes in vehicle/ 

road parameters like mass and even wear and road conditions. The lateral tire 

forces were estimated by using the estimated vertical and longitudinal tire forces 

from the previous two modules and Extended Kalman filter (EKF) and UKF.  A. 

Zareian et al., [12] developed an estimation algorithm for road friction coefficient 

using extended Kalman filter, recursive least square, and neural network.     

Recently in [ 13, 14] we presented a comparative study of EKF and UKF for 

estimating motion states of an autonomous vehicle-trailer system. The system is 

equipped with the GPS, odometry, and hitch angle sensors. The simulations 

indicate that both EKF and UKF give the same accurate result but the processing 

time is increase by 17.7% for UKF. 

For robotic vehicles with six in-wheel drives, K. Yi et al., [15] presented skid 

steering-based control which utilizes the tire states estimation. However, the 

lateral forces estimation was not addressed. 

In a previous work, we presented the state estimation algorithm of the robotic 

vehicle with six in-wheel drives. WE started with the estimation of wheel angular 

acceleration using Kalman filter then the longitudinal tires forces, vertical tires 

forces, and lateral tires forces are estimated [16]. In this work, we fabricated a 

small-scale prototype of the robotic vehicle for experimental verification of the 

previous simulation results specially the angular acceleration estimation and the 

slip ratio estimation. Then we presented a detailed procedure to calculate the 

nonlinear motor torque constant and to estimate the longitudinal tire forces 

experimentally.  

In this paper, section 2 presents the dynamic model of a 6-wheel vehicle 

including the driving system, the arm dynamic model, and the sprung mass 

dynamic model. Section 3 presents the estimation algorithm based on Kalman 

filter and manipulated dynamic equation. Then the simulation is presented in 

section 4. Finally, in section 5, we presented the experimental results and 

discussion. 
 

2. SYSTEM DYNAMIC MODELING 
In this section, the dynamic model of a six-wheel vehicle with articulated 

suspension (RVAS) shown in Fig.1 is presented for the vehicle forces estimation 

algorithm. The RVAS is an unmanned ground vehicle based on a skid steering 

using an independent in-wheel motor at each wheel. The RVAS model is 

implemented in section 3 using Simulink/Matlab as a test environment. The 

dynamic model consists of five main parts: in-wheel motor model, wheel dynamic 

model, Fiala tire model, arm dynamic model, and the sprung mass dynamic 

model. 
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The dynamic model is 18 DOF with the dynamic equations of six wheels, six 

connective arm rods, and a sprung mass. The sprung mass is modeled as rigid 

body connected to the arm rods. The sprung mass has 6 DOF translational motions 

(longitudinal, lateral, and vertical) and rotational motions (roll, pitch, and yaw).  

The RVAS 6-wheel vehicle dynamic model includes three parts: driving system, 

arm dynamic model, and sprung mass dynamic model, shown in Fig.2. 

 
Fig. 1: 6-wheel Vehicle Model 

 

 
Fig. 2: Schematic Diagram of the Dynamic Model 

2.1 Driving system 
 The driving system contains an in-wheel motor model, a wheel dynamic model, 

and a tire model. By applying the simplified wheel free-body diagram in Fig.3, 

the wheel dynamic model is determined by, 
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𝐽𝑤 ×
𝑑𝜔𝑖(𝑡)

𝑑𝑡
 =  Ti(𝑡) − 𝑅𝑖𝐹𝑡𝑥𝑖(𝑡)  …………………………………. (1) 

 
Fig. 3: Free body diagram of the wheel 

 

Fiala tire model is then used to calculate the tire forces and moments [17] as 

shown in Fig.4. where (𝐶𝛼 113.963 N/rad, CSLIP11kN/m). According to the 

magic formula tire model [15], the slip ratio and the slip angle are expressed by, 

 λi = {

𝑅𝑖×𝑤𝑖−𝑣𝑡𝑥𝑖

𝑅𝑖×𝑤𝑖
  𝑖𝑓(λi > 0)

𝑅𝑖×𝑤𝑖−𝑣𝑡𝑥𝑖

𝑣𝑡𝑥𝑖
  𝑖𝑓(λi ≤ 0)

 , αi = − tan−1 (
𝑣𝑡𝑦𝑖

𝑣𝑡𝑥𝑖
)  ……………….. (2)  

Tire center velocity vector (longitudinal, lateral, vertical) can be calculated 

considering the relative rigid body motion by, 

𝑟̇wi = [𝑣txi 𝑣tyi 𝑣tzi]
T
  = 𝑟̇cg + ωcg × ri/cg + ωarm_i/cg × rwi/i 

   = [

𝑣𝑥

𝑣𝑦

𝑣𝑧

]  + [
𝜙̇

𝜃̇
𝜑̇

]  × [
𝑙𝑖

±𝑡𝑤
0

] + [
0

𝜃̇𝑎𝑟𝑚_𝑖

0

]  × [
−𝑙𝑎𝑟𝑚sin (𝜃𝑎𝑟𝑚_𝑖)

0
−𝑙𝑎𝑟𝑚cos (𝜃𝑎𝑟𝑚_𝑖)

]  ………………. (3) 

 
Fig. 4: Schematic diagram of Fiala tire model implementation 

2.2 Arm dynamic model 
The arm dynamic model is determined using the equations of motions 4, and 

5: which can be derived considering dynamic equilibrium of the arm and the 

wheel, as shown in Fig.5, 
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∑𝐹𝑥_𝑎𝑟𝑚_𝑖 = 𝐹𝑡𝑥𝑖 − 𝐹𝑠𝑥𝑖 = (𝑚𝑎𝑟𝑚 × 𝑥̈𝑎𝑟𝑚,𝑖) + (𝑚𝑤 × 𝑥̈𝑤_𝑖)  

∑𝐹𝑦_𝑎𝑟𝑚_𝑖 = 𝐹𝑡𝑦𝑖 − 𝐹𝑠𝑦𝑖 = (𝑚𝑎𝑟𝑚 × 𝑦̈𝑎𝑟𝑚,𝑖) + (𝑚𝑤 × 𝑦̈𝑤_𝑖)  

∑𝐹𝑧_𝑎𝑟𝑚_𝑖 = 𝐹𝑡𝑧𝑖 − 𝐹𝑠𝑧𝑖 − (𝑚𝑤 + 𝑚𝑎𝑟𝑚) ∙ 𝑔 = (𝑚𝑎𝑟𝑚 × 𝑧̈𝑎𝑟𝑚_𝑖) + (𝑚𝑤 × 𝑧̈𝑤_𝑖) .…(4) 

∑𝑀𝑥_𝑎𝑟𝑚_𝑖 = 𝐼𝑎𝑟𝑚_𝑥 × 𝛼𝑎𝑟𝑚_𝑥𝑖 + (𝐼𝑎𝑟𝑚_𝑧 − 𝐼𝑎𝑟𝑚_𝑦) × 𝜔𝑎𝑟𝑚_𝑦𝑖 × 𝜔𝑎𝑟𝑚_𝑧𝑖 + 𝑙𝑎𝑟𝑚 ×

cos(𝜃𝑎𝑟𝑚_𝑖) (𝑚𝑤 × 𝑦̈𝑤𝑖 + 𝑚𝑎𝑟𝑚
𝑦̈𝑎𝑟𝑚_𝑖

2
)  

∑𝑀𝑦_𝑎𝑟𝑚_𝑖 = 𝐼𝑎𝑟𝑚_𝑦 × 𝛼𝑎𝑟𝑚_𝑦𝑖 + (𝐼𝑎𝑟𝑚_𝑥 − 𝐼𝑎𝑟𝑚_𝑧) × 𝜔𝑎𝑟𝑚_𝑧𝑖 × 𝜔𝑎𝑟𝑚_𝑥𝑖 − (𝑚𝑤 ×

𝑥̈𝑤𝑖 + 𝑚𝑎𝑟𝑚
𝑥̈𝑎𝑟𝑚_𝑖

2
) 𝑙𝑎𝑟𝑚 × cos(𝜃𝑎𝑟𝑚_𝑖) + (𝑚𝑤 × 𝑧̈𝑤𝑖 + 𝑚𝑎𝑟𝑚

𝑧̈𝑎𝑟𝑚_𝑖

2
)𝑙𝑎𝑟𝑚 × sin(𝜃𝑎𝑟𝑚_𝑖)  

∑𝑀𝑧_𝑎𝑟𝑚_𝑖 = 𝐼𝑎𝑟𝑚_𝑧 × 𝛼𝑎𝑟𝑚_𝑧𝑖 + (𝐼𝑎𝑟𝑚_𝑦 − 𝐼𝑎𝑟𝑚_𝑥) × 𝜔𝑎𝑟𝑚_𝑥𝑖 × 𝜔𝑎𝑟𝑚_𝑦𝑖 − 𝑙𝑎𝑟𝑚 ×

sin(𝜃𝑎𝑟𝑚_𝑖) (𝑚𝑤 × 𝑦̈𝑤𝑖 + 𝑚𝑎𝑟𝑚
𝑦̈𝑎𝑟𝑚_𝑖

2
)   ……………………………………… (5) 

The angular velocity vector of the ith arm rod can be expressed in relative to the 

vehicle orientation rates by, 

ωarm_i = [ωarm_xi   ωarm_yi   ωarm_zi]
T
  

      = ωcg + ωarm_i/cg = [𝜙̇     𝜃̇ + 𝜃̇𝑎𝑟𝑚_𝑖     𝜑̇]
𝑇
  ………………………… (6) 

Similarly, the angular acceleration vector of the ith arm rod can be written with 

respect to the vehicle center by,  

𝛼arm_i = [αarm_xi   αarm_yi αarm_zi]
T
  

      = αcg + αarm_i/cg + ωcg × ωarm_i/cg 

= [
𝜙̈

𝜃̈
𝜑̈

]  +  [
0

𝜃̈𝑎𝑟𝑚_𝑖

0

]  + [
𝜙̇

𝜃̇
𝜑̇

] × [
0

𝜃̇𝑎𝑟𝑚_𝑖

0

] = [

𝜙̈ − 𝜃̇𝑎𝑟𝑚_𝑖 × 𝜑̇

𝜃̈ + 𝜃̈𝑎𝑟𝑚_𝑖

𝜑̈ + 𝜃̇𝑎𝑟𝑚_𝑖 × 𝜙̇

] ……………… (7) 

The translational acceleration vector of the ith wheel can be obtained by,  

𝑟̈wi = [𝑥̈wi 𝑦̈wi 𝑧̈wi]
T  

       = 𝑟̈i + ωarm_i × [ωarm_i × 𝑟𝑤𝑖/𝑖] + αarm_i × 𝑟𝑤𝑖/𝑖 

The translational acceleration vector of the rotational center of the ith arm rod is, 

𝑟̈i = [𝑥̈i 𝑦̈i 𝑧̈i]
T = 𝑟̈cg + ωcg × [ωcg × 𝑟𝑖/𝑐𝑔] + αcg × 𝑟𝑖/𝑐𝑔 ………………… (8) 

The arm moment summation in Eq.5 is in equilibrium with, 

∑𝑀𝑥_𝑎𝑟𝑚_𝑖 = −𝑀𝑠𝑥𝑖 + 𝑙𝑎𝑟𝑚 × cos(𝜃𝑎𝑟𝑚_𝑖) ∙ 𝐹𝑡𝑦𝑖   

∑𝑀𝑦_𝑎𝑟𝑚_𝑖 = − 𝑇𝑆&𝐷_𝑖 − 𝑙𝑎𝑟𝑚 × sin(𝜃𝑎𝑟𝑚_𝑖) (𝑚𝑤 +
𝑚𝑎𝑟𝑚

2
)𝑔 − 𝑙𝑎𝑟𝑚 ×

cos(𝜃𝑎𝑟𝑚_𝑖)𝐹𝑡𝑥𝑖 + 𝑙𝑎𝑟𝑚 × sin(𝜃𝑎𝑟𝑚_𝑖)𝐹𝑡𝑧𝑖  

∑𝑀𝑧_𝑎𝑟𝑚_𝑖 = −𝑀𝑠𝑧𝑖 − 𝑙𝑎𝑟𝑚 × sin(𝜃𝑎𝑟𝑚_𝑖) 𝐹𝑡𝑦𝑖 − Tself_i ……………………. (9) 

where 𝑇𝑆&𝐷_𝑖 is the sum of spring and damping torques of the ith arm 

suspension (spring and damper) as, 

𝑇𝑆&𝐷_𝑖(𝜃𝑎𝑟𝑚_𝑖  , 𝜃̇𝑎𝑟𝑚_𝑖) = 𝑘𝑠 × 𝜃𝑎𝑟𝑚_𝑖 + 𝑐𝑑 × 𝜃̇𝑎𝑟𝑚_𝑖 ……………………… (10) 

Substituting (6) - (8) into (5), the equation of the arm motion can be obtained as, 

{𝐼𝑎𝑟𝑚_𝑦 + (𝑚𝑤 +
𝑚𝑎𝑟𝑚

4
) 𝑙𝑎𝑟𝑚

2 } 𝜃̈𝑎𝑟𝑚_𝑖 =  

     ∑𝑀𝑦_𝑎𝑟𝑚_𝑖 − {𝐼𝑎𝑟𝑚_𝑦 + (𝑚𝑤 +
𝑚𝑎𝑟𝑚

4
) 𝑙𝑎𝑟𝑚

2 } 𝜃̈  

    −(𝐼𝑎𝑟𝑚_𝑥 − 𝐼𝑎𝑟𝑚_𝑧)𝜙̇𝜑̇  

     + (𝑚𝑤 +
𝑚𝑎𝑟𝑚

2
) 𝑙𝑎𝑟𝑚{cos(𝜃𝑎𝑟𝑚_𝑖) 𝑥̈𝑖 − sin(𝜃𝑎𝑟𝑚_𝑖) 𝑧̈𝑖}  

     − (𝑚𝑤 +
𝑚𝑎𝑟𝑚

4
) 𝑙𝑎𝑟𝑚

2 [sin(𝜃𝑎𝑟𝑚_𝑖) cos(𝜃𝑎𝑟𝑚_𝑖) (𝜙̇2 − 𝜑̇2) 

     +{cos2(𝜃𝑎𝑟𝑚_𝑖) − sin2(𝜃𝑎𝑟𝑚_𝑖)}𝜙̇𝜑̇] ……………… …………………. (11) 
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Fig. 5: Dynamic equilibrium of the ith arm and wheel  

 

2.3 Sprung mass dynamic model 
The dynamic behavior of the sprung mass is determined in the vehicle model 

using the internal forces and moments, Fig.6, obtained from the arm dynamic 

 (b) top view 

 

 (c) rear view 

 

(a) right-side view  
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model. The dynamic equations of the sprung mass can be obtained from the 

d’Alembert principle [15] as follows: 

∑ 𝐹𝑠𝑥𝑖
6
𝑖=1 = 𝑚𝑠[𝑣̇𝑥 + (𝑣𝑧𝜃̇ − 𝑣𝑦𝜑̇)]  

∑ 𝐹𝑠𝑦𝑖
6
𝑖=1 = 𝑚𝑠[𝑣̇𝑦 + (𝑣𝑥𝜑̇ − 𝑣𝑧𝜙̇)]  

∑ 𝐹𝑠𝑧𝑖
6
𝑖=1 = 𝑚𝑠[𝑣̇𝑧 + (𝑣𝑦𝜙̇ − 𝑣𝑥𝜃̇)] …………………………………… (12) 

 

  

Fig. 6: Vehicle Body (sprung mass) forces 

∑ 𝑀𝑠𝑥𝑖 + 𝑡𝑤{∑ 𝐹𝑠𝑧(2𝑖−1) − ∑ 𝐹𝑡𝑧(2𝑖)
3
𝑖=1

3
𝑖=1 }6

𝑖=1   

  = 𝐼𝑥𝜙̈ + (𝐼𝑧 − 𝐼𝑦)𝜃̇𝜑̇  

∑ 𝑇𝑆&𝐷_𝑖 + {−𝑙𝑓 ∑ 𝐹𝑠𝑧𝑖 − 𝑙𝑚 ∑ 𝐹𝑠𝑧𝑖
4
𝑖=3

2
𝑖=1 + 𝑙𝑟 ∑ 𝐹𝑠𝑧𝑖

6
𝑖=5 }6

𝑖=1   

    = 𝐼𝑦𝜃̈ + (𝐼𝑥 − 𝐼𝑧)𝜑̇𝜙̇  

∑ 𝑀𝑠𝑧𝑖 + 𝑡𝑤{∑ 𝐹𝑠𝑥(2𝑖) − ∑ 𝐹𝑠𝑥(2𝑖−1)
3
𝑖=1

3
𝑖=1 }6

𝑖=1 + {𝑙𝑓 ∑ 𝐹𝑠𝑦𝑖 + 𝑙𝑚 ∑ 𝐹𝑠𝑦𝑖
4
𝑖=3

2
𝑖=1 −

𝑙𝑟 ∑ 𝐹𝑠𝑦𝑖
6
𝑖=5 }   = 𝐼𝑧𝜑̈ + (𝐼𝑦 − 𝐼𝑥)𝜙̇𝜃̇ …………………………………… (13) 

 
 

3. ESTIMATION ALGORITHM 
In order to estimate the tire forces, Kalman filter and manipulated dynamic 

equation are used. First using Taylor formula and Kalman filter the wheel angular 

acceleration is estimated based on the measurement of wheel angular speed. Then 

the corresponding dynamic equations are used to estimate the longitudinal, vertical, 

and lateral tire forces as shown in Fig.7. 

3.1 Longitudinal tire force estimation 
To estimate the wheel angular acceleration applying Kalman filter, as system 

model is derived by Taylor expansion, 

ωi(𝑡 + ℎ) = ωi(𝑡) + ℎω𝑖
∙ (𝑡) +

ℎ2

2
ω𝑖

∙∙(𝑡) + d1 

ω𝑖
∙ (𝑡 + ℎ) = ω𝑖

∙ (𝑡) + ℎω𝑖
∙∙(𝑡) + d2 

ω𝑖
∙∙(𝑡 + ℎ) = ω𝑖

∙∙(𝑡) + d3   ……………………………………………… (14) 

𝑥̂(𝑘) = 𝐴𝑒𝑠𝑡𝑥̂(𝑘 − 1) + 𝐿(𝑘){𝑦(𝑘) − 𝐶𝐴𝑒𝑠𝑡 𝑥̂(𝑘 − 1)} …………………… (15) 

where h, y, and d are the sampling period, the wheel angular speed measurement 

and disturbance respectively. 

𝐴𝑒𝑠𝑡 = [
1
0
0
        

ℎ
1
0
      

ℎ2/2
ℎ
1

  ], C= [1  0  0] 

By using (1), the longitudinal tire force can be estimated, 

𝐹̂𝑡𝑥𝑖(𝑘)  =  
1

𝑅𝑖

[𝑇𝑖(𝑘 − 1) − 𝐽𝑤 × 𝜔̂𝑖
∙(𝑘)] …………………………… (16) 

3.2 Vertical tire force estimation 
Based on the steady-state arm dynamics shown in Fig.8, the vertical tire force 

can be estimated approximately by, 

 



 9  

 
Fig. 7: Scheme for tire forces estimation 

 
Fig. 8: Simplified arm dynamic model 

𝐹̂𝑡𝑧𝑖(𝑘)  =  𝐹𝑡𝑧𝑖_𝑠𝑡𝑎𝑡𝑖𝑐 + ∑
∆𝐹̂𝑡𝑧𝑖(𝑘−𝑖∆𝑡) 

𝑁

𝑁
𝑖=0   ………………………………… (17) 

∆𝐹̂𝑡𝑧𝑖 =
𝑘𝑠∆𝜃𝑎𝑟𝑚𝑖

+ 𝑐𝑑∆𝜃̇𝑎𝑟𝑚𝑖

𝑙𝑎𝑟𝑚 sin(𝜃𝑎𝑟𝑚𝑖
)

+
𝐹̂𝑡𝑥𝑖

tan(𝜃𝑎𝑟𝑚𝑖
)
 

−
(𝑚𝑤 +

𝑚𝑎𝑟𝑚

2
)

tan(𝜃𝑎𝑟𝑚𝑖
)

[𝑎𝑥 ± 𝑡𝑤𝜑̇𝜃̇ − 𝑙𝑖(𝜃̇
2 + 𝜙̇2)] 

+(𝑚𝑤 +
𝑚𝑎𝑟𝑚

2
) [𝑎𝑧 ± 𝑡𝑤𝜙̇𝜃̇ + 𝑙𝑖𝜙̇𝜑̇] 

+𝑙𝑎𝑟𝑚 (𝑚𝑤 +
𝑚𝑎𝑟𝑚

4
) cos(𝜃𝑎𝑟𝑚𝑖

)(𝜑̇2 − 𝜙̇2) 

+𝑙𝑎𝑟𝑚 (𝑚𝑤 +
𝑚𝑎𝑟𝑚

4
)

1−2sin2(𝜃𝑎𝑟𝑚𝑖
) 

sin(𝜃𝑎𝑟𝑚𝑖
)

𝜙̇𝜑̇ ……………… (18)  

The vertical tire force can be estimated by solving (5) and (9):  

𝐹̂𝑡𝑧𝑖(𝑘) =
[∑ 𝑀𝑦𝑎𝑟𝑚𝑖

]+𝑇𝑆&𝐷_𝑖+𝑙𝑎𝑟𝑚×sin(𝜃𝑎𝑟𝑚_𝑖)(𝑚𝑤+
𝑚𝑎𝑟𝑚

2
)𝑔

𝑙𝑎𝑟𝑚×sin(𝜃𝑎𝑟𝑚_𝑖)
+

𝐹̂𝑡𝑥𝑖

tan(𝜃𝑎𝑟𝑚_𝑖)
 ………………… (19) 

 

3.3 Lateral tire force estimation 
In case of the low slip condition where, the lateral acceleration of the vehicle 

is less than 3 m/s2, the lateral force can be:  

𝐹𝑡𝑦𝑖 = −𝐶𝛼𝛼𝑖 ……………………… ……………………… …………..(20) 

, where 𝐶𝛼 is the cornering stiffness. Based on the arm dynamic equation (4), the 

lateral force acting on the sprung mass is,  

𝐹𝑠𝑦𝑖 = −𝐶𝛼𝛼𝑖 − (𝑚𝑎𝑟𝑚 × 𝑦̈𝑎𝑟𝑚,𝑖) + (𝑚𝑤 × 𝑦̈𝑤_𝑖)……………………………… (21) 
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By substitute (21) in (12), we have, 

∑[−𝐶𝛼𝛼𝑖 − (𝑚𝑎𝑟𝑚 × 𝑦̈𝑎𝑟𝑚,𝑖) + (𝑚𝑤 × 𝑦̈𝑤𝑖
)

6

𝑖=1

] 

= 𝑚𝑠[𝑣̇𝑦 + (𝑣𝑥𝜑̇ − 𝑣𝑧𝜙̇)] ……………………… ……………………… (22) 

by solving for the exact value of 𝐶𝛼, 

𝐶𝛼 =
{−𝑚𝑠[𝑣̇𝑦+(𝑣𝑥𝜑̇−𝑣𝑧𝜙̇)]+∑ [−(𝑚𝑎𝑟𝑚×𝑦̈𝑎𝑟𝑚,𝑖)+(𝑚𝑤×𝑦̈𝑤𝑖

)6
𝑖=1 ]}

∑ 𝛼𝑖
6
𝑖=1

 ……………… (23) 

Hence, the lateral tire forces 𝑭𝒕𝒚𝒊 can by calculated from (20). 

 

4. SIMULATION RESULTS AND DISCUSSION 
In this section we want to test the estimation algorithm (Eq’s 14 to 23). To 

do that, we used the Eq’s (1) – (13) to build Simulink test environment to test the 

estimation algorithm (using Eq’s 14 to 23). Each equation is built as a Matlab 

function in Simulink. The robotic vehicle parameters are listed in Table 1.  

We implemented nine test scenarios to verify the estimation algorithm. In test 

scenario 1, different input torque to the wheels and same tire longitudinal tire 

forces are assumed.  

Ti1 [1; 2; 3; 4; 5; 6] N/m.   

Ftxi1 [1; 1; 1; 1; 1; 1] N.  

Table1: Parameters of the system dynamic model  
Symbol value Symbol value Symbol value 

𝒎𝒔 833.4kg 𝑚𝑎𝑟𝑚 61.2 kg 𝑚𝑤 44.83 kg 

𝑰𝒙 289.8 𝐼𝑎𝑟𝑚_𝑥 0.702 𝐼𝑤_𝑥 1.14 

𝑰𝒚 915.0 𝐼𝑎𝑟𝑚_𝑦 1.5 𝐽𝑤 1.8 

𝑰𝒛 915.0 𝐼𝑎𝑟𝑚_𝑧 1.5 𝐼𝑤_𝑧 1.14 

𝒍𝒇 0.821 m 𝑙𝑎𝑟𝑚 0.351 m   R 0.310 m 

𝒍𝒎 0.423 m 𝜃𝑎𝑟𝑚𝐹
(0) pi/4 𝑘𝑠 8021 N.m/rad 

𝒍𝒓 -0.497m 𝜃𝑎𝑟𝑚𝑀
(0) 3pi/4 𝑐𝑑 286 N.m.s/rad 

𝒕𝒘 0.660 m 𝜃𝑎𝑟𝑚𝑅
(0) 3pi/4   

 
The resulting wheels angular accelerations are constants. These constants are 

dependent on Ti (the higher the torque the higher the acceleration). The wheel 

angular speeds are linear and the wheel angles of rotation are 2nd order as shown 

in Fig.9.  

 

Based on test scenario 1, the estimated longitudinal tire force starts with a big 

error since the initial condition can take any unknow value and after 2 sec it 

converge to the correct estimation as shown in Fig.10.  
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Fig. 9: Test Scenario 1 results on wheel angular acceleration (rad/s2), angular velocity 

(rad/s), angle of rotation acceleration (rad). 

 
Fig. 10: Estimation of the longitudinal tire force (N) 

In Test Scenario 2, we investigate the effect of a sudden change in the 

longitudinal tire force acting on the first wheel for 2 seconds (at t = 6 to 8 sec). 

We compared between the results at different estimation matrices sizes.  

When estimating the longitudinal tire force with 𝐴𝑒𝑠𝑡 of size 3, it takes 1 sec 

rise time as shown in Fig.11. 

We tested several sizes of the system matrix 𝐴𝑒𝑠𝑡 as follows; 
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𝐴𝑒𝑠𝑡3 = [
1
0
0
   
ℎ
1
0
   
ℎ2/2

ℎ
1

 ],                                𝐴𝑒𝑠𝑡4 = [

1
0
0
0

   

ℎ
1
0
0

   

ℎ2/2
ℎ
1
0

   

ℎ3/3!

ℎ2/2
ℎ
1

] 

𝐴𝑒𝑠𝑡5 =

[
 
 
 
 
1
0
0
0
0

   

ℎ
1
0
0
0

   

ℎ2/2
ℎ
1
0
0

   

ℎ3/3!

ℎ2/2
ℎ
1
0

   

ℎ4/4!

ℎ3/3!

ℎ2/2
ℎ
1 ]

 
 
 
 

,  𝐴𝑒𝑠𝑡10 =

[
 
 
 
 
1
0
…
…
0

   

ℎ
1
0
…
0

   

ℎ2/2
ℎ
1
…
0

 

…
…
…
…
…

   

ℎ9/9!

ℎ8/8!

ℎ7/7!
…
1 ]

 
 
 
 

 

Our simulation results in Fig.11, indicate that the rise time is enhanced by 

increasing the matrix size:  

Test Scenario 2: At matrix size 3, the rise time is 1 sec. 

Test Scenario 3: At matrix size 4, the rise time is 0.7 sec.  

Test Scenario4: At matrix size 5, the rise time: 0.4 sec. (accepted) 

Test Scenario 5: At matrix size 10, the rise time is 0.25 sec, but the overshoot (> 

40%)  

 
Fig. 11: Estimation of the longitudinal tire force (N) using system matrix sizes of 3, 

4, 5, and 10   



 13  

5. EXPERIMENTAL RESULTS  

In order to verify the state estimation algorithm presented in section3 and 

simulated in section4, we need to access the robotic vehicle with six in-wheel 

drives but this was not available. We had to scale down the vehicle understudy 

and fabricate similar small prototype robotic vehicle with six in-wheel drives as 

show in Fig12. 

 
Fig. 12: Small prototype of the robotic vehicle with six in-wheel drives  

5.1 States Estimation: 

The first experiment is to move forward with constant velocity and stop for two 

seconds and then return backward in same constant velocity. We used encoder for 

angle measurements as an input to the estimation algorithm. As shown in Fig.13, 

the solid red line is the estimation with applying the moving average of size (40 

for velocity and 50 for acceleration), the solid blue line is based on Kalman 

estimator (Matrix size 4), and the green solid line is the raw data. 
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Fig. 13: Angular position, velocity and acceleration estimation 

As a result, both the final estimator and the moving average filter removed noise 

from the raw data. However, the Kalman estimator rather than the moving average 

filter obtained faster estimation speed and similar estimation results. 

5.2 Slip rate estimation: 

The second experiment is to estimate the slip ratio on the pavement as shown in 

Fig.14 and Fig.15. In Fig.14, the black line represents the vehicle speed (IMU 

measurement), while the blue line-Wheel speed (Apply Kalman filter after 

measuring Hall sensor). 
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 Fig. 14: The 2nd experiment on the pavement, comparing speed of the center of 

gravity and the wheel speed (R*w) 

 

Fig. 15: The 2nd experiment on the pavement, Slip ratio estimation 

The average slip rate calculated through 20 experiments under the same 

conditions was 8.96%. The actual moving distance and the average moving 

distance measured with the Hall sensor (including slip) were 2590mm and 

2817.51mm, respectively, and the ratio to the slip amount was also confirmed to 

be similar to the slip rate estimated at 8.075%. This indicates that the estimated 

slip ratio is reliable. 

The third experiment is to estimate the slip ratio on off-road driving experiment 

as shown in Fig.16, Fig.17 and Fig.18. In Fig.17, the red line- is the vehicle speed 

(IMU measurement), while the blue line-Wheel speed (Apply Kalman filter after 

measuring Hall sensor) 
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Fig. 16: The 3rd experiment Off-road driving experiment 

 

Fig. 17: The 3rd experiment Off-road driving experiment, comparing speed of the 

center of gravity and the wheel speed (R*w) 

 

Fig. 18: The 3rd experiment Off-road driving experiment, Slip ratio estimation 

The average of the actual moving distance calculated through 20 experiments 

and the moving distance measured (including slip) by the Hall sensor are 

1972mm and 2297.2 mm, respectively. The slip ratio is calculated as 14.19%. 

As a result of the slip rate estimation, although it has more noise than the flat 

terrain, the average slip rate is 17.28%. The above experiment also shows data 

similar to the ratio of slip rate and slip amount. In other words, it was confirmed 

that the slip rate estimation using the Kalman filter has a high correlation even in 

irregular terrain. 
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5.3 Longitudinal tire force estimation: 

The fourth experiment is to estimate the longitudinal tire force based on motor 

current measurement. Based on the motor (Encoder Gear motor: CHR-GM25-

370, DC12.0V 350 RPM/1:34) data sheet and the experimental motor torque 

measurement setup shown in fig.19, the motor constants are estimated as shown 

in fig.20. 

The rated current is 1.7 A, the stall current is 5.6 A, below is the algorithm of estimating 

the motor torque constant kt. 

If (0 < 𝑖 <= 1.7) …. where 𝑖  is the current  

    𝑘𝑡1 0.335  

If (1.7 <= 𝑖 <= 5.6) 

    𝑘𝑡 = 𝑓(𝑖) = 𝑘𝑡_𝑟𝑎𝑡𝑒𝑑 −
𝑖−𝑖𝑟𝑎𝑡𝑒𝑑

𝑖𝑠𝑡𝑎𝑙𝑙−𝑖𝑟𝑎𝑡𝑒𝑑
(𝑘𝑡𝑟𝑎𝑡𝑒𝑑

− 𝑘𝑡_𝑠𝑡𝑎𝑙𝑙) 

𝑘𝑡1 0.335 -
(𝑖 − 1.7)(0.124) 

(3.9)
 

The motor is controlled in our system with PWM. In this case the average voltage 

changes and the average current changes. Then the torque will be something 

between the 6V and 12V tables in the motor data sheet. The motor torque Eq.24 

can be modified to be Eq.25. 

Torque: T = 𝑘𝑡  𝑖(𝑡) ……………………………(24) 

Torque: T = 𝑘𝑡  𝑖(𝑡) ∗ (𝑝𝑤𝑚%)  ………………(25) 

Where 𝑝𝑤𝑚% =
𝑝𝑤𝑚

255
 

tire weight: 32 gm, Tire weight + motor weight: 144 gm 

 Tire diameter: 64 mm 

Then the moment of inertia can be expressed as: 

𝐽𝑤  = 0.5mr2 = 1.638E-5 Kgm2 

The longitudinal tire force estimation in Eq.16 can be updated in to Eq.26 for 

the given motor.  

𝐹̂𝑡𝑥𝑖(𝑘) =  
1

0.032
[𝑇𝑖(𝑘 − 1) − (1.638E-5) × 𝜔̂𝑖

∙(𝑘)] ..(26) 

 

Fig. 19: Experimental setup for motor constants estimation 
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Fig. 20: Non-linear torque constant estimation 

 

6. CONCLUSION 
In this research we investigate velocity, acceleration, slip ratio estimation and 

longitudinal tire force estimation for a six-wheeled robot with articulated 

suspension. Our estimation algorithm is verified in simulation and experimental 

tests. Using Kalman filter the wheel angular acceleration is estimated which is 

used to estimate the longitudinal tire force distribution. Different state estimation 

matrix sizes are tested. The accepted response in for matrix size 5 with rise time 

0.4 sec and overshoot < 20%.  

Then a small prototype of the robotic vehicle with six in-wheel drives is 

fabricated for experimental verification of the estimation algorithm. Four 

experiments are executed in pavement and off-road driving to estimate the wheel 

angular position, velocity and acceleration states and finally the slip ratio is 

estimated in these situations. We found experimentally that the slip rate estimation 

using the Kalman filter has a high correlation even in irregular terrain. Moreover, 

the longitudinal tire force estimation law for the given motor is then formulated. 
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